Part Number Hot Search : 
TC7107A MAX913D ORE9601 MVA6A TC7107A MVA6A LCE28 PCA9534D
Product Description
Full Text Search
 

To Download IR21814PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  data sheet no. pd60172 rev.g typical connection high and low side driver features ? floating channel designed for bootstrap operation fully operational to +600v tolerant to negative transient voltage dv/dt immune ? gate drive supply range from 10 to 20v ? undervoltage lockout for both channels ? 3.3v and 5v input logic compatible ? matched propagation delay for both channels ? logic and power ground +/- 5v offset. ? lower di/dt gate driver for better noise immunity ? output source/sink current capability 1.4a/1.8a ? also available lead-free (pbf) ir21814 ir2181 ir2181 ( 4 )( s ) & (pbf) www.irf.com 1 (refer to lead assignments for correct pin configuration). this/these diagram(s) show electrical connections only. please refer to our application notes and designtips for proper circuit board layout. description the ir2181(4)(s) are high voltage, high speed power mosfet and igbt drivers with independent high and low side referenced output channels. pro- prietary hvic and latch immune cmos technologies enable rugge- dized monolithic construction. the logic input is compatible with standard cmos or lsttl output, down to 3.3v logic. the output drivers feature a high pulse current buffer stage designed for minimum driver cross- conduction. the floating channel can be used to drive an n-channel power mosfet or igbt in the high side configuration which operates up to 600 volts. ir2181/ir2183/ir2184 feature comparison packages 14-lead pdip ir21814 8-lead pdip ir2181 14-lead soic ir21814s 8-lead soic ir2181s
ir2181 ( 4 ) ( s ) & (pbf) 2 www.irf.com symbol definition min. max. units v b high side floating absolute voltage -0.3 625 v s high side floating supply offset voltage v b - 25 v b + 0.3 v ho high side floating output voltage v s - 0.3 v b + 0.3 v cc low side and logic fixed supply voltage -0.3 25 v lo low side output voltage -0.3 v cc + 0.3 v in logic input voltage (hin & lin - ir2181/ir21814) v ss - 0.3 v ss + 10 v ss logic ground (ir21814 only) v cc - 25 v cc + 0.3 dv s /dt allowable offset supply voltage transient 50 v/ns p d package power dissipation @ t a +25 c (8-lead pdip) 1.0 (8-lead soic) 0.625 (14-lead pdip) 1.6 (14-lead soic) 1.0 rth ja thermal resistance, junction to ambient (8-l ead pdip) 125 (8-lead soic) 200 (14-lead pdip) 75 (14-lead soic) 120 t j junction temperature 150 t s storage temperature -50 150 t l lead temperature (soldering, 10 seconds) 300 absolute maximum ratings absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. all voltage param- eters are absolute voltages referenced to com. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. v c/w w c note 1: logic operational for v s of -5 to +600v. logic state held for v s of -5v to -v bs . (please refer to the design tip dt97-3 for more details). note 2: hin and lin pins are internally clamped with a 5.2v zener diode. vb high side floating supply absolute voltage v s + 10 v s + 20 v s high side floating supply offset voltage note 1 600 v ho high side floating output voltage v s v b v cc low side and logic fixed supply voltage 10 20 v lo low side output voltage 0 v cc v in logic input voltage (hin & lin - ir2181/ir21814) v ss v ss + 5 v ss logic ground (ir21814/ir21824 only) -5 5 t a ambient temperature -40 125 c v symbol definition min. max. units recommended operating conditions the input/output logic timing diagram is shown in figure 1. for proper operation the device should be used within the recommended conditions. the v s and v ss offset rating are tested with all supplies biased at 15v differential.
ir2181 ( 4 ) ( s ) & (pbf) www.irf.com 3 dynamic electrical characteristics v bias (v cc , v bs ) = 15v, v ss = com, c l = 1000 pf, t a = 25 c. symbol definition min. typ. max. units test conditions t on turn-on propagation delay 180 270 v s = 0v t off turn-off propagation delay 220 330 v s = 0v or 600v mt delay matching, hs & ls turn-on/off 0 35 t r turn-on rise time 40 60 v s = 0v t f turn-off fall time 20 35 v s = 0v nsec static electrical characteristics v bias (v cc , v bs ) = 15v, v ss = com and t a = 25 c unless otherwise specified. the v il , v ih and i in parameters are referenced to v ss /com and are applicable to the respective input leads hin and lin. the v o , i o and ron p arameters are referenced to com and are applicable to the respective output leads: ho and lo. symbol definition min. t yp. max. units test conditions v ih logic 1 input voltage (ir2181/ir21814 ) 2.7 v cc = 10v to 20v v il logic 0 input voltage (ir2181/ir21814) 0.8 v cc = 10v to 20v v oh high level output voltage, v bias - v o 1.2 i o = 0a v ol low level output voltage, v o 0.1 i o = 0a i lk offset supply leakage current 50 v b = v s = 600v i qbs quiescent v bs supply current 20 60 150 v in = 0v or 5v i qcc quiescent v cc supply current 50 120 240 v in = 0v or 5v i in+ logic 1 input bias current 25 60 v in = 5v i in- logic 0 input bias current 1.0 v in = 0v v ccuv+ v cc and v bs supply undervoltage positive going 8.0 8.9 9.8 v bsuv+ threshold v ccuv- v cc and v bs supply undervoltage negative going 7.4 8.2 9.0 v bsuv- threshold v ccuvh hysteresis 0.3 0.7 v bsuvh i o+ output high short circuit pulsed current 1.4 1.9 v o = 0v, pw 10 s i o- output low short circuit pulsed current 1.8 2.3 v o = 15v, pw 10 s v a v a
ir2181 ( 4 ) ( s ) & (pbf) 4 www.irf.com functional block diagrams 2181 lin uv detect delay hin vs ho vb pulse filter hv level shifter r r s q uv detect pulse generator vss/com level shift vss/com level shift com lo vcc 21814 lin uv detect delay com lo vcc hin vss vs ho vb pulse filter hv level shifter r r s q uv detect pulse generator vss/com level shift vss/com level shift
ir2181 ( 4 ) ( s ) & (pbf) www.irf.com 5 lead assignments 8-lead pdip 8-lead soic lead definitions symbol description hin logic input for high side gate driver output (ho), in phase (ir2181/ir21814) lin logic input for low side gate driver output (lo), in phase (ir2181/ir21814) vss logic ground (ir21814 only) v b high side floating supply ho high side gate drive output v s high side floating supply return v cc low side and logic fixed supply lo low side gate drive output com low side return ir2181 ir2181s 1 2 3 4 8 7 6 5 hin lin com lo v b ho v s v cc 1 2 3 4 8 7 6 5 hin lin com lo v b ho v s v cc 1 2 3 4 5 6 7 1 4 13 12 11 10 9 8 hin lin vss com lo v cc v b ho v s 1 2 3 4 5 6 7 1 4 13 12 11 10 9 8 hin lin vss com lo v cc v b ho v s 14-lead pdip 14-lead soic ir21814 ir21814s
ir2181 ( 4 ) ( s ) & (pbf) 6 www.irf.com figure 1. input/output timing diagram figure 2. switching time waveform definitions figure 3. delay matching waveform definitions
ir2181 ( 4 ) ( s ) & (pbf) www.irf.com 7 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-on propagation delay (ns) typ. max. figure 4a. turn-on propagation delay vs. temperature 0 100 200 300 400 500 10 12 14 16 18 20 supply voltage (v) turn-on propagation delay (ns) figure 4b. turn-on propagation delay vs. supply voltage typ. max. 100 200 300 400 500 600 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-off propagation delay (ns) typ. max. figure 5a. turn-off propagation delay vs. temperature 0 100 200 300 400 500 600 10 12 14 16 18 20 supply voltage (v) turn-off propagation delay (ns) figure 5b. turn-off propagation delay vs. supply voltage typ. max.
ir2181 ( 4 ) ( s ) & (pbf) 8 www.irf.com 0 20 40 60 80 100 120 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-on rise time (ns) typ. max. figure 6a. turn-on rise time vs. temperature 0 20 40 60 80 100 120 10 12 14 16 18 20 supply voltage (v) turn-on rise time (ns) figure 6b. turn-on rise time vs. supply voltage typ. max. 0 20 40 60 80 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-off fall time (ns) typ max. figure 7a. turn-off fall time vs. temperature 0 20 40 60 80 10 12 14 16 18 20 supply voltage (v) turn-off fall time (ns) figure 7b. turn-off fall time vs. supply voltage typ. max.
ir2181 ( 4 ) ( s ) & (pbf) www.irf.com 9 0 1 2 3 4 5 6 -50-25 0 255075100125 temperature ( o c) logic "1" input voltage (v) mi n. figure 8a. logic "1" input voltage vs. temperature 0 1 2 3 4 5 6 10 12 14 16 18 20 supply voltage (v) logic "1" input voltage (v) figure 8b. logic "1" input voltage vs. supply voltage mi n. 0 1 2 3 4 5 6 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "0" input voltage (v) max. figure 9a. logic "0" input voltage vs. temperature 0 1 2 3 4 5 6 10 12 14 16 18 20 supply voltage (v) logic "0" input voltage (v) figure 9b. logic "0" input voltage vs. supply voltage max.
ir2181 ( 4 ) ( s ) & (pbf) 10 www.irf.com 0 1 2 3 4 5 -50 -25 0 25 50 75 100 125 temperature ( o c) high level output (v) max. figure 10a. high level output vs. temperature 0 1 2 3 4 5 10 12 14 16 18 20 supply voltage (v) high level output (v) figure 10b. high level output vs. supply voltage max. 0.0 0.1 0.2 0.3 0.4 0.5 -50 -25 0 25 50 75 100 125 temperature ( o c) low level output (v) max. figure 11a. low level output vs. temperature 0.0 0.1 0.2 0.3 0.4 0.5 10 12 14 16 18 20 supply voltage (v) low level output (v) figure 11b. low level output vs. supply voltage max.
ir2181 ( 4 ) ( s ) & (pbf) www.irf.com 11 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) offset supply leakage current ( ? a) max. figure 12a. offset supply leakage current vs. temperature 0 100 200 300 400 500 100 200 300 400 500 600 v b boost voltage (v) offset supply leak age current ( ? a) figure 12b. offset supply leakage current vs. v b boost voltage max. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature ( o c) v bs supply current ( ? a) mi n. figure 13a. v bs supply current vs. temperature typ. max. 0 50 100 150 200 250 10 12 14 16 18 20 v bs floating supply voltage (v) v bs supply current ( ? a) figur e 13b. v bs supply current vs. v bs floating supply voltage typ. max. mi n.
ir2181 ( 4 ) ( s ) & (pbf) 12 www.irf.com 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc supply current ( ? a) mi n. figur e 14a. v cc supply current vs. v cc temperature typ. max. 0 100 200 300 400 500 10 12 14 16 18 20 v cc supply voltage (v) v cc supply current ( ? a) figur e 14b. v cc supply current vs. v cc supply voltage typ. max. mi n. 0 20 40 60 80 100 120 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "1" input bias current ( ? a) figure 15a. logic "1" input bias current vs. temperature typ. max. 0 20 40 60 80 100 120 10 12 14 16 18 20 supply voltage (v) logic "1" input bias current ( ? a) figure 15b. logic "1" input bias current vs. supply voltage typ. max.
ir2181 ( 4 ) ( s ) & (pbf) www.irf.com 13 0 1 2 3 4 5 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "0" input bias current ( ? a) max. figure 16a. logic "0" input bias current vs. temperature 0 1 2 3 4 5 10 12 14 16 18 20 supply voltage (v) logic "0" input bias current ( ? a) figure 16b. logic "0" input bias current vs. supply voltage max. 6 7 8 9 10 11 12 -50-250 255075100125 temperature ( o c) v cc and v bs uv threshold (+) (v) mi n. figure 17. v cc and v bs undervoltage threshold (+) vs. temperature typ. max. 6 7 8 9 10 11 12 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc and v bs uvthreshold (-) (v) mi n. figure 18. v cc and v bs undervoltage threshold (-) vs. temperature typ. max.
ir2181 ( 4 ) ( s ) & (pbf) 14 www.irf.com 0 1 2 3 4 5 -50 -25 0 25 50 75 100 125 temperature ( o c) output source current (a) mi n. figure 19a. output source current vs. temperature typ. 0 1 2 3 4 5 10 12 14 16 18 20 supply voltage (v) output source current (a) figure 19b. output source current vs. supply voltage typ. mi n. 1.0 2.0 3.0 4.0 5.0 -50 -25 0 25 50 75 100 125 temperature ( o c) output sink current (a) mi n. figure 20a. output sink current vs. temperature typ. 0 1 2 3 4 5 10 12 14 16 18 20 supply voltage (v) output sink current (a) figure 20b. output sink current vs. supply voltage typ. mi n.
ir2181 ( 4 ) ( s ) & (pbf) www.irf.com 15 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temprature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 70v 0v 140v 20 40 60 80 100 120 140 1101001000 frequency (khz) temperature ( o c) 140v 70v 0v figure 21. ir2181 vs. frequency (irfbc20), r gate =33 ? , v cc =15v fi gure 22. i r 2181 vs. frequency (i rfbc30), r gate =22 ? , v cc =15v fi gure 23. i r 2181 vs. frequency (i rfbc40), r gate =15 ? , v cc =15v fi gure 24. i r 2181 vs . frequency (i rfpe50), r gate =10 ? , v cc =15v
ir2181 ( 4 ) ( s ) & (pbf) 16 www.irf.com 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 70v 0v 140v fi gure 25. i r 21814 vs. frequency (i rfbc20), r gate =33 ? , v cc =15v fi gure 26. i r 21814 vs. frequency (i rfbc30), r gate =22 ? , v cc =15v fi gure 27. i r 21814 vs. frequency (i rfbc 40), r gate =15 ? , v cc =15v fi gure 28. i r 21814 vs. frequency (i rfpe50), r g ate =10 ? , v cc =15v
ir2181 ( 4 ) ( s ) & (pbf) www.irf.com 17 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 0v 140v 70v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) tempreture ( o c) 14 0 v 70v 0v fi gure 30. i r 2181s vs. frequency (i rfbc30), r gate =22 ? , v cc =15v fi gure 29. i r 2181s vs. frequency (i rfbc 20), r gate =33 ? , v cc =15v fi gure 31. i r 2181s vs . frequency (i rfbc 40), r gate =15 ? , v cc =15v fi gure 32. i r 2181s vs . frequency (i rfpe50), r gate =10 ? , v cc =15v
ir2181 ( 4 ) ( s ) & (pbf) 18 www.irf.com 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v fi gure 33. i r 21814s vs. frequency (i rfbc20), r gate =33 ? , v cc =15v fi gure 36. i r 21814s vs. frequency (i rfpe50), r gate =10 ? , v cc =15v fi gure 34. i r 21814s vs . frequency (i rfbc 30), r gate =22 ? , v cc =15v fi gure 35. i r 21814s vs . frequency (i rfbc 40), r gate =15 ? , v cc =15v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v
ir2181 ( 4 ) ( s ) & (pbf) www.irf.com 19 01-6014 01-3003 01 (ms-001ab) 8-lead pdip case outlines 01-6027 01-0021 11 (ms-012aa) 8-lead soic 87 5 65 d b e a e 6x h 0.25 [.010] a 6 4 3 12 4. outline conforms to jedec outline ms-012aa. notes: 1. dimensioning & toleranc ing per asme y14.5m-1994. 2. controlling dimension: millimeter 3. dimensions are shown in millimeters [inches]. 7 k x 45 8x l 8x c y footprint 8x 0.72 [.028] 6.46 [.255] 3x 1.27 [.050] 8x 1.78 [.070] 5 dimension does not include mold protrusions. 6 dimension does not include mold protrusions. mold protrusions no t to exc eed 0.25 [.010]. 7 dimension is the length of lead for soldering to a substrate. mold protrusions no t to exc eed 0.15 [.006]. 0.25 [.010] cab e1 a a1 8x b c 0.10 [.004] e1 d e y b a a1 h k l .189 .1497 0 .013 .050 basic .0532 .0040 .2284 .0099 .016 .1968 .1574 8 .020 .0688 .0098 .2440 .0196 .050 4.80 3.80 0.33 1.35 0.10 5.80 0.25 0.40 0 1.27 basic 5.00 4.00 0.51 1.75 0.25 6.20 0.50 1.27 min max millimeters in c h e s min max dim 8 e c .0075 .0098 0.19 0.25 .025 basic 0.635 basic
ir2181 ( 4 ) ( s ) & (pbf) 20 www.irf.com 01-6010 01-3002 03 (ms-001ac) 14-lead pdip 01-6019 01-3063 00 (ms-012ab) 14-lead soic (narrow body)
ir2181 ( 4 ) ( s ) & (pbf) www.irf.com 21 basic part (non-lead free) 8-lead pdip ir2181 order ir2181 8-lead soic ir2181s order ir2181s 14-lead pdip ir21814 order ir21814 14-lead soic ir21814 order ir21814s leadfree part 8-lead pdip ir2181 order ir2181pbf 8-lead soic ir2181s order ir2181spbf 14-lead pdip ir21814 order IR21814PBF 14-lead soic ir21814 order ir21814spbf order information leadfree part marking information lead free released non-lead free released part number date code irxxxxxx yww? ?xxxx pin 1 identifier ir logo lot code (prod mode - 4 digit spn code) assembly site code per scop 200-002 p ? marking code thisproduct has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site http://www.irf.com data and specifications subject to change without notice. ir world headquarters: 233 kansas st., el segundo, california 90245 tel: (310) 252-7105 10/15/2004


▲Up To Search▲   

 
Price & Availability of IR21814PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X